Identification and elimination of yield gaps in oil palm plantations in Indonesia

T.H. Fairhurst, W. Griffiths, C. Donough, C. Witt, D. McLaughlin, K.E. Giller

Tropical Crop Consultants Ltd, Wye, UK
Private address, Cairns, Australia
International Plant Nutrition Institute (IPNI), Penang, Malaysia
World Wildlife Fund (WWF), Washington DC, USA
Wageningen University, Netherlands
Outline of presentation

- Context
- Theory of yield gap management and best management practices (BMPs)
- Practical implementation
- Conclusions and perspective
CONTEXT - Challenges and opportunities

- Demand for vegetable oil to double by 2050 (Corley, 2009)
- At current yield an extra 12M ha of oil palm needed
- Increasingly stringent environmental controls
 - Crop carbon footprint
 - Forest displacement for new development
Why focus on yield intensification?

- **For the grower**
 - Maximize return on investment
 - Increase IRR and reduce payback period
 - Improved public profile

- **For the public and NGOs**
 - Efficient use of land occupied by oil palm
 - Spare land (and rainforest) for other uses
BACKGROUND - Site yield potential

- In Indonesia and Malaysia \(~35 \text{ t ha}^{-1}\) of fresh fruit bunches = \(8 \text{ t ha}^{-1}\) of oil?
- Derived from
 - Fertilizer trials
 - Blocks under long term best management
How to optimize three production phases?

- Shorten time to maturity and peak yield
- Prolong plateau phase
- Reduce rate of decline

After Ng, 1976
Measure change in frequency of yields for soil x palm age groups over time

Reduce variability and increase yield!
Oil palm productivity is very sensitive to environmental stress.
An interval of >36 months elapses between the formation of a flower and the production of a ripe bunch!

Source: Donough, 2008
Potential yield of a progeny under a given soil type and climate

Yield (\% potential)

Y-a Y-n Y-mey Y-max

Yield potential of progeny for a given soil and climate
Yield gap 1 caused by deficiencies in planting technique

Yield potential of progeny for a given soil and climate

Maximum economic yield
Causes of Yield Gap 1?

- Poor plantation establishment
 - Poor nursery technique and culling
 - Erosion and compaction at land clearing
 - Incorrect planting density or inaccurate lining
 - Failure to replace unproductive palms
 - Poor gap filling at planting
 - Gaps due to palm death
 - Failure to establish legume cover plants
Yield gap 2 caused by nutrient deficiencies

Yield potential of progeny for a given soil and climate

Maximum economic yield

Yield reduced because of nutrient deficiencies

Yield gap 1

Yield gap 2

Yield (potential)
Causes of Yield Gap 2?

- Nutrient constraints
 - Failure to take account of soil variability
 - Faulty leaf sampling
 - Insufficient field inspection to corroborate results of leaf analysis
 - Failure to use long term data trends
 - Failure to make spatial analysis of nutritional trends
Yield gap 3 caused by poor management

- Yield gap 1: Maximum economic yield
- Yield gap 2: Yield reduced because of nutrient deficiencies
- Yield gap 3: Yield reduced because of poor management

Yield potential of progeny for a given soil and climate

Yield (% potential)

40 50 60 70 80 90 100

Y-a Y-n Y-mey Y-max
Causes of Yield Gap 3?

- Poor harvesting and management
 - Inadequate infrastructure (mill-to-palm access)
 - Poor round control
 - Poor harvest supervision
 - Failure to implement fertilizer and crop residue application programmes accurately
 - Human resource management
SITE ASSESSMENT - Plot frequency of yields

Focus more attention on blocks with greatest scope for improvement.
Spatial analysis of yield gaps: Are blocks with large yield gaps dispersed or clustered?

Source: Gfroerer, 2009
PRACTICAL IMPLEMENTATION of BMPs

- Pilot phase runs for four years
- Evaluation
 - Productivity
 - Cost benefit analysis
 - Changes required in management
- Broad scale implementation (may begin after one year)
Fertilizer use efficiency is increased with proper spreading
Agronomic database provides quantitative basis for yield maximization

<table>
<thead>
<tr>
<th>Company</th>
<th>Asiatic Persada</th>
<th>BMP: BMP02</th>
<th>Division</th>
<th>DD</th>
<th>Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil: BMP</td>
<td>Topography: Hilly</td>
<td>YOP 1989</td>
<td>YAP 17</td>
<td>DFH 02/07/199</td>
<td>MFH: 30</td>
</tr>
<tr>
<td>Previous crop: 2nd forest</td>
<td>Land clearing: Full Man</td>
<td>Density: 135</td>
<td>Area: 46.4 ha</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yr</th>
<th>YAP</th>
<th>Pot</th>
<th>Act</th>
<th>Gap</th>
<th>BW</th>
<th>BN</th>
<th>N</th>
<th>P2O5</th>
<th>K2O</th>
<th>MgO</th>
<th>B</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>B</th>
<th>PCS</th>
<th>PH</th>
<th>SPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>17</td>
<td>25</td>
<td>28</td>
<td>2.8</td>
<td>23</td>
<td>10</td>
<td>1.4</td>
<td>1.4</td>
<td>1.0</td>
<td>0.9</td>
<td>2.4</td>
<td>2.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.09</td>
<td>0.10</td>
<td>2.6</td>
<td>1</td>
<td>0.16</td>
</tr>
<tr>
<td>04</td>
<td>16</td>
<td>25</td>
<td>27</td>
<td>2.0</td>
<td>20</td>
<td>12</td>
<td>1.6</td>
<td>1.6</td>
<td>0.7</td>
<td>0.7</td>
<td>2.5</td>
<td>2.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.10</td>
<td>0.10</td>
<td>2.7</td>
<td>0.15</td>
<td>1.1</td>
</tr>
<tr>
<td>03</td>
<td>15</td>
<td>25</td>
<td>18</td>
<td>-7.0</td>
<td>17</td>
<td>10</td>
<td>0.9</td>
<td>1.0</td>
<td>0.4</td>
<td>0.9</td>
<td>1.2</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.03</td>
<td>0.04</td>
<td>2.5</td>
<td>0.15</td>
<td>1.1</td>
</tr>
<tr>
<td>02</td>
<td>14</td>
<td>25</td>
<td>15</td>
<td>-10.0</td>
<td>14</td>
<td>11</td>
<td>1.7</td>
<td>1.4</td>
<td>1.4</td>
<td>0.9</td>
<td>1.3</td>
<td>2.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.06</td>
<td>0.05</td>
<td>2.7</td>
<td>0.18</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Manager’s comments

Source: Gfroerer, 2009
Excellent standards of management in place in a BMP block

- Healthy leaf canopy
- Sufficient ground cover
- Full access
- Complete crop recovery
RESULTS AND CONCLUSIONS
Comparison of BMP and non-BMP blocks over five years

Yield (t ha\(^{-1}\))

Bunch weight (kg)

Bunch number

Year

01 02 03 04 05

01 02 03 04 05

01 02 03 04 05
Results from six sites in Indonesia

- Average yield increase of 3.2 t ha⁻¹ (range 0.4 – 6 t ha⁻¹)
- Average increase in bunch number (114 bunch ha⁻¹) and bunch weight (+1 kg)
- Less difference between sites after BMP implementation

Table:

<table>
<thead>
<tr>
<th>Site</th>
<th>N Sum 1</th>
<th>E Kal</th>
<th>W Kal</th>
<th>C Kal</th>
<th>S Sum</th>
<th>N Sum 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>BMP</td>
<td>35</td>
<td>30</td>
<td>25</td>
<td>20</td>
<td>15</td>
<td>35</td>
</tr>
</tbody>
</table>

Source: Donough, 2009
BMP works on degraded lands
(anthropic savanna of *Imperata cylindrica*)
Scaling up

- Only where pilot phase reveals economically worthwhile yield improvement
- Stepwise implementation in 1,000-1,500 ha blocks
- Identify all constraints and plan their removal
Conclusions

- Determine potential yield for all sites
- Goal of management is to minimize the gap between achievable and actual yield
- BMP is a step-wise process to close yield gaps
 - Small scale pilot phase
 - Scale up once evidence of gaps available
- Maximum economic yield is the key to profitability and competitiveness
Thank you for your attention!

Tropical Crop Consultants Ltd

www.tropcropconsult.com

www.ipni.net